I Espaces de fonctions continues

Soient $a, b \in \mathbb{R}$ avec a < b, et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1) Généralités

Définition 1. On définit $C^0([a,b],\mathbb{K})$ comme l'ensemble des fonctions continues de [a,b] dans \mathbb{K} .

Définition 2. Soit $f \in C^0([a, b], \mathbb{K})$. On définit la norme uniforme $\|.\|_{\infty}$ par $\|f\|_{\infty} = \sup_{x \in [a, b]} |f(x)|$.

Définition 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{C}^0([a,b],\mathbb{K})$. On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction $f:[a,b]\to\mathbb{K}$ lorsque :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \forall x \in [a, b], \ |f_n(x) - f(x)| \leqslant \varepsilon$$

Cela revient à dire que $\lim_{n\to\infty} \|f_n - f\|_{\infty} = 0$.

Théorème 4. Un limite uniforme de fonctions continues est continue.

Corollaire 5. L'espace $(\mathcal{C}^0([a,b],\mathbb{K}),\|.\|_{\infty})$ est un espace de Banach.

Exemple 6. La suite $(f_n)_{n\in\mathbb{N}}$ définie sur [0,1] par $f_n(x) = \left(1 - \frac{x}{n}\right)^n$ converge uniformément vers $x \mapsto e^{-x}$.

Exemple 7. La suite $(f_n)_{n\in\mathbb{N}}$ définie sur [0,1] par $f_n(x)=x^n$ ne converge pas uniformément.

Théorème 8 (Heine). Toute fonction de $C^0([a,b],\mathbb{K})$ est uniformément continue.

Lemme 9 (Dini). Toute suite croissante de $C^0([a,b],\mathbb{K})$ qui converge simplement dans $C^0([a,b],\mathbb{K})$ converge uniformément.

Application 10. Soit $(P_n)_{n\in\mathbb{N}}$ la suite de $C^0([a,b],\mathbb{K})$ définie par $P_0=0$ et $P_{n+1}(x)=P_n(x)+\frac{1}{2}(x^2-P_n^2(x))$ pour $n\in\mathbb{N}$ et $x\in[-1,1]$. Alors $(P_n)_{n\in\mathbb{N}}$ converge uniformément vers $x\mapsto |x|$.

Théorème 11 (Weierstrass). Soient $f \in C^0([a,b],\mathbb{R})$ et $\varepsilon > 0$. Il existe P une fonction polynomiale à coefficients réels telle que $||f - P||_{\infty} \leq \varepsilon$.

Application 12. Soit $f \in C^0([a,b], \mathbb{K})$ vérifiant $\int_a^b t^n f(t) dt = 0$ pour tout $n \in \mathbb{N}$. Alors f = 0 sur [a,b].

2) Théorème d'Ascoli

Définition 13. Une famille de fonctions $Y \subseteq \mathcal{C}^0([a,b],\mathbb{K})$ est dite équicontinue lorsque :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall f \in Y, \ |x - y| < \eta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Exemple 14. (i) Une partie finie de $C^0([a,b],\mathbb{K})$ est équicontinue.

- (ii) Une suite uniformément convergente de fonctions de $C^0([a,b],\mathbb{K})$ forme une famille équicontinue.
- (iii) L'ensemble des fonctions lipschitziennes est équicontinu.

Théorème 15 (Ascoli). Soit $Y \subseteq C^0([a,b],\mathbb{K})$. Sont équivalentes :

- (i) Y est équicontinue et bornée pour la norme uniforme.
- (ii) \overline{Y} est compacte.

Application 16. Soient X et Y deux espaces métriques compacts, μ une mesure borélienne finie et $K \in C^0(X \times Y, \mathbb{K})$. On considère l'application :

$$T: \left| \begin{array}{ccc} \mathcal{C}^0(Y, \mathbb{K}) & \longrightarrow & \mathcal{C}^0(X, \mathbb{K}) \\ x & \longmapsto & \int_Y K(x, y) f(y) \, d\mu(y) \end{array} \right|$$

Alors $T\left(B_{\mathcal{C}^0(Y,\mathbb{K})}(0,1)\right)$ est relativement compact dans $\mathcal{C}^0(X,\mathbb{K})$.

II Espaces L^p

Soient (X, \mathcal{A}, μ) un espace mesuré, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , $p \in [1, +\infty]$ et q son exposant conjugué tel que $\frac{1}{p} + \frac{1}{q} = 1$.

1) Définitions et premières propriétés

Définition 17. Pour tout réel p > 0, on définit le \mathbb{K} -espace vectoriel :

$$\mathscr{L}^p_{\mathbb{K}}(X,\mathcal{A},\mu) = \left\{ f: X \to \mathbb{K} \text{ mesurable } \middle| \int_X |f|^p d\mu < +\infty \right\}$$

Sauf situation ambiguë, on privilégiera la notation plus concise $\mathscr{L}^p_{\mathbb{K}}(\mu)$.

Exemple 18. Dans le cas de la mesure de comptage, cette définition donne les espaces $\ell_{\mathbb{K}}(\mathbb{N})$ des suites de puissance p sommable.

Proposition 19. Soient 0 des réels.

(i) Si μ est finie, alors $\mathscr{L}^p_{\mathbb{K}}(\mu) \supset \mathscr{L}^q_{\mathbb{K}}(\mu)$.

(ii) Si on considère la mesure de comptage sur \mathbb{N} , alors $\ell^p_{\mathbb{K}}(\mathbb{N}) \supset \ell^q_{\mathbb{K}}(\mathbb{N})$.

Remarque 20. Il n'y a pas, en général, d'inclusion entre les espaces \mathcal{L}^p .

Définition 21. Pour toute fonction $f: X \to \mathbb{K}$ et tout p > 0, on définit :

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}} \quad \left(\text{convention}: \infty^{\frac{1}{p}} = \infty\right)$$

Théorème 22 (Hölder). Soient $f \in \mathscr{L}^p_{\mathbb{K}}(\mu)$ et $g \in \mathscr{L}^q_{\mathbb{K}}(\mu)$, où $\frac{1}{p} + \frac{1}{q} = 1$. Alors $\|fg\|_1 \leqslant \|f\|_p \|g\|_q$.

Théorème 23 (Minkowski). Soient $p \in [1, +\infty[$ et $f, g \in \mathcal{L}_{\mathbb{K}}^p(\mu)$. Alors $||f + g||_p \leq ||f||_p + ||g||_p$.

Définition 24. Pour $1 \leq p < +\infty$, on définit $L^p_{\mathbb{K}}(\mu)$ comme l'espace vectoriel normé quotient de $\mathscr{L}^p_{\mathbb{K}}(\mu)$ par les fonctions presque nulles. On associera par abus de langage un élément de $\mathscr{L}^p_{\mathbb{K}}(\mu)$ à sa classe dans $L^p_{\mathbb{K}}(\mu)$.

Définition 25. On définit le supremum essentiel de $f: X \to \overline{\mathbb{R}^+}$ par :

$$||f||_{\infty} = \text{supess}(f) = \inf\{M > 0 \mid \mu(\{f > M\}) = 0\} \geqslant 0$$

On note $\mathscr{L}^{\infty}_{\mathbb{K}}(\mu)$ l'ensemble des fonctions essentiellement bornées.

Définition 26. On définit $L^{\infty}_{\mathbb{K}}(\mu)$ comme l'espace vectoriel normé quotient de $\mathscr{L}^{\infty}_{\mathbb{K}}(\mu)$ par les fonctions presque nulles.

Remarque 27. En considérant 1 et ∞ comme exposants conjugués, on retrouve les inégalités de Hölder et de Minkowski.

Théorème 28 (Riesz-Fischer). Pour tout $1 \leq p \leq +\infty$, $L_{\mathbb{K}}^{p}(\mu)$ est un espace de Banach.

2) Convolution, densité et régularisation

Définition 29. On appelle convolution de f et g la fonction f * g définie par $f * g(x) = \int_{\mathbb{R}^d} f(y)g(x-y) \, dy$ lorsque celle-ci est bien définie.

$$\begin{aligned} & \textbf{Proposition 30.} \quad (i) \ f \in L^1, \ g \in L^p \Rightarrow \|f * g\|_p \leqslant \|f\|_1 \, \|g\|_p. \\ & (ii) \ f \in L^p, \ g \in L^q \Rightarrow \|f * g\|_\infty \leqslant \|f\|_p \, \|g\|_q. \end{aligned}$$

Proposition 31. $(L^1, +, *)$ est une algèbre de Banach.

Définition 32. Une suite $(\rho_n)_{n\in\mathbb{N}}$ de fonctions positives de L^1 d'intégrale 1 sur \mathbb{R}^d est une approximation de l'unité si elles sont d'intégrale 1 sur \mathbb{R}^d , et si, pour tout $\varepsilon > 0$, $\lim_{n \to \infty} \int_{\{|x| > \varepsilon\}\}} \rho_n = 0$. Si les ρ_n sont \mathcal{C}^{∞} à support compact, on parle de suite régularisante.

Théorème 33. Soient $f \in L^p(\mathbb{R}^d)$ et $(\rho_n)_n$ une approximation de l'identité $(p \in [1, +\infty[), \ alors \lim_{n \to +\infty} (\rho_n * f) = f \ dans \ L^p(\mathbb{R}^d).$

Théorème 34. Pour tout $p \in [1, +\infty[$, $C_c^{\infty}(\mathbb{R}^d)$ est dense dans $L^p(\mathbb{R}^d)$.

3) Cas particulier de L^2

Définition 35. L'application $(f,g) \mapsto \langle f,g \rangle_{L^2_{\mathbb{K}}} = \int_X fg \, d\mu$ définit un produit scalaire. On note $\|.\|_{L^2_x} = \|.\|_2$ la norme associée.

Corollaire 36. $\left(L^2_{\mathbb{K}}(\mu), \langle .,. \rangle_{L^2_{\mathbb{K}}}\right)$ est un espace de Hilbert.

Théorème 37. Soient I un intervalle de \mathbb{R} et ρ une fonction poids. S'il existe a > 0 tel que $\int_I e^{a|x|} \rho(x) dx < \infty$, alors les polynômes orthogonaux associés à ρ forment une base hilbertienne de $L^2(I, \rho)$.

III Espaces de Sobolev

On considère I =]a, b[un intervalle de \mathbb{R} .

Définition 38. Soit $f \in L^1(I)$. On dit que f admet une dérivée faible s'il existe $g \in L^1(I)$ tel que, pour tout $\varphi \in \mathcal{C}_c^{\infty}(I)$, on a $\int_I f \varphi' = -\int_I g \varphi$. On note alors g = f', qui est unique.

Définition 39. On définit $H^1(I) = \{ f \in L^2(I) \mid f' \in L^2(I) \}$, que l'on munit du produit scalaire défini par $\langle f, g \rangle_{H^1} = \langle f, g \rangle_{L^2} + \langle f', g' \rangle_{L^2}$.

Théorème 40. $(H^1(I), \langle ., . \rangle_{H^1})$ est un espace de Hilbert.

Définition 41. On définit $H_0^1(I)$ comme l'adhérence de $\mathcal{C}_c^{\infty}(I)$ dans $H^1(I)$. $H_0^1(I)$ est un espace de Hilbert lorsqu'il est munit du produit scalaire $\langle .,. \rangle_{H^1}$.

Théorème 42 (Riesz). Soient H un espace de Hilbert et $\varphi: H \to \mathbb{R}$ une forme linéaire continue. Alors il existe un unique $u \in H$ tel que $\langle u, v \rangle = \varphi(v)$ pour tout $v \in H$.

Théorème 43 (Lax-Milgram). Soient H un problème de Hilbert, a une forme bilinéaire continue et coercive sur H, et ℓ une forme linéaire et continue sur H. Alors :

$$\exists ! u \in H, \ \forall v \in H, \ a(u, v) = \ell(v)$$

Si de plus a est symétrique, u est caractérisé par :

$$\frac{1}{2}a(u,u) - \ell(u) = \min_{v \in H} \left\{ \frac{1}{2}a(v,v) - \ell(v) \right\}$$

Application 44 (Dirichlet). Pour $f \in L^2$, on considère le problème :

$$\begin{cases} -u'' + u = f & sur]0, 1[\\ u(0) = u(1) = 0 \end{cases}$$

Il existe une unique solution faible $u \in H^1_0$ à ce problème.

Développements

- Théorème de Riesz-Fischer (28) [Bre87]
- Densité des polynômes orthogonaux (37) [BMP05]
- Théorème de Weierstrass (11) [Gou08]

Références

[BP12] Marc Briane and Gilles Pagès. *Théorie de l'intégration*. Vuilbert, 2012

[BMP05] Vincent Beck, Jérôme Malick, and Gabriel Peyré. *Objectif Agrégation*. H&K, 2005

 $[\operatorname{Bre}87]$ Haïm Brezis. Analyse fonctionelle. Masson, 1987

 $\left[\text{QZ}13\right]$ Hervé Queffélec and Claude Zuily. Analyse pour l'agrégation. Dunod, 2013